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Abstract 

This article addresses safety in potentially dangerous situations created by negative 

manifestations of human factors during aircraft flight. These manifestations include erroneous 

actions by the pilot, delayed reaction to rapid changes in flight conditions, inattention, fatigue, 

illness, inaction, suicidal intent, hijacking of the aircraft by intruders, including terrorists, who 

are among the passengers, panic behavior of passengers, etc. The escalation of such a situation, 

considered critical, into an accident can be prevented if the aircraft is designed as a “smart” 

human-machine system with a high level of robotization. The automatic part of this system must 

be able to recognize dangerous human behavior and perform autonomous measures aimed at 

minimizing the risks. In the most extreme case, it must block human actions and transfer aircraft 

control to a fully automatic mode – until the end of the flight with a safe landing. The purpose of 

the article is to formulate the problem of developing an onboard automatic control system that 

meets such tasks, and a preliminary analysis of the possibilities of its solution. The specific 

features of the problem under consideration determine the choice of artificial intelligence 

elements, in particular neural network technology, for its effective solution. 

Keywords: aircraft, automatic control, critical situation, human factors, neural network, safety. 

1 INTRODUCTION 

In modern aircraft, a significant portion of the flight control functions is performed or can be 

performed automatically, without the participation of a human operator (pilot). The prospect of 

civil aviation moving to fully unmanned transport air vehicles or passenger planes without crews 

is not clear – it has both advantages and disadvantages (McLean 2003; Harris 2003). Without 

making any additional contribution to their consideration, it should be noted that research and 

development (R&D) aimed at reducing human participation in aircraft control is largely 

motivated by the need to minimize negative manifestations of human factors during flight and 

the risks associated with them. The range of these negative manifestations covers erroneous 

actions of the pilot, delayed reaction to rapid changes in weather or air traffic conditions, 

inattention, fatigue, illness, inaction, suicidal intentions, hijacking of an aircraft by intruders, 

including terrorists, who are among the passengers, panic behavior of passengers on board, etc. 

If the escalation of a critical situation caused by any of these initial events – we will call such a 

situation  anthropogenic  –  is  not  stopped,  it  can lead  to  a serious  flight  accident  and even a  
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catastrophe. Some examples of catastrophes of this genesis, which resulted in the destruction of 

aircraft and human fatalities, are given in Table 1. 

Table 1  Some aviation catastrophes caused by negative manifestations of human factors in 

flight  

Date Location Aircraft, airline and flight Probable
1
 cause 

2001-09-11 
USA, 

Washington, 

DC 

Boeing 757-223, American 

Airlines, Flight 77  

Hijacking of the aircraft 

by terrorists (ASN 2006a) 

2001-09-11 USA, PA 
Boeing 757-222, United Airlines, 

Flight 93 

Hijacking of the aircraft 

by terrorists (ASN 2006b) 

2001-09-11 
USA, New 

York 

Boeing 767-222, United Airlines, 

Flight 175 

Hijacking of the aircraft 

by terrorists (ASN 2006c) 

2001-09-11 
USA, New 

York 

Boeing 767-223ER, American 

Airlines, Flight 11 

Hijacking of the aircraft 

by terrorists (ASN 2006d) 

2009-06-01 Atlantic Ocean 
Airbus A330-203, Air France, 

Flight 447 

Misunderstanding of 

critical situation by pilots 

and erroneous actions to 

get out of it (ASN 2025c) 

2013-08-14 USA, BHM 
Airbus A300F4-622R, UPS, Flight 

1354 
Pilot fatigue (ASN 2013) 

2013-11-29  
Namibia, 

Bwabwata 

National Park 

Embraer ERJ-190AR, Linhas 

Aéreas de Moçambique (LAM), 

Flight 470 

The pilot’s suicidal 

intentions (ASN 2024c) 

2015-03-24  
France, Prads-

Haute-Bléone  

Airbus A320-211, Germanwings,  

Flight 9525 

The pilot’s suicidal 

intentions (ASN 2025b) 

2016-03-19 
Russia, Rostov 

Airport (ROV) 

Boeing 737-8KN, flydubai,  

Flight FZ981 

Pilot fatigue (ASN 2025a, 

Yakimovich 2024) 

2021-07-06 
Russia, 

Kamchatka, 

Palana 

Antonov An-26B-100, Kamchatka 

Aviation Enterprise  

Lack of time to perform 

the required maneuver 

(ASN 2024b, Yakimovich 

2024) 

Fortunately, not every critical situation that arises in flight leads to catastrophe – 

sometimes a safe outcome is possible. It is the bifurcation nature of a critical situation that is its 

distinguishing feature – a control action applied rightly in spatial and temporal terms can prevent 

it from turning into a disaster. This is the difference between a critical situation and an 

emergency one – the latter, as a rule, is irreversible and results in an accident that is associated 

with destruction and material losses. An example of a critical situation created by humans and 

resolved safely is that which occurred on 17 February 2024, involving Lufthansa Airbus A321-

231, flight LH1140. It was en route from Frankfurt to Seville. Near Madrid, the captain left the 

cockpit and shortly after, the co-pilot suddenly lost consciousness. The plane flew without pilot 

control for about 10 minutes. When the captain returned to the cockpit, he decided to divert to 

Madrid-Barajas Airport, where he landed without further incident (ASN 2024a). 

  

                                                           
1
 In the terminology of investigation reports. 
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Anthropogenic critical situations are characterized by uncertainty of occurrence, 

development and outcome. This uncertainty includes both aleatory and epistemic components. 

The first of them primarily encompasses pilot behavior patterns that are deviations from normal 

piloting but are predictable and associated with erroneous actions, delayed reactions, inattention, 

or fatigue. The uncertainty of the occurrence of a critical situation arising from any of these 

causes can be characterized by an appropriate probability estimate based on statistics 

accumulated in aviation. Based on the known causes of critical situations of this type and 

reasonable probability estimates, standard design and organizational measures can be 

implemented in order to minimize the risk of an accident or catastrophe. 

Other negative manifestations of the human factor during aircraft flight – sudden illness 

of the pilot, inaction, suicidal intentions, hijacking, etc. – are more of an epistemic nature. They 

are difficult to predict and almost impossible to control, however, some preventative design and 

organizational measures are feasible.  

The reversibility of critical situations provides a fundamental opportunity to cope with 

them and ensure a safe outcome. The purpose of this article is to explore this possibility and 

present the results in the form of an engineering formulation of the problem of creating a special 

on-board automatic control subsystem, intended to maintain safety in anthropogenic critical 

situations that may arise during the flight of a civil aircraft. 

2 EXISTING APPROACHES TO MANAGING ANTHROPOGENIC CRITICAL 

SITUATIONS 

2.1 Traditionally used approaches 

Design measures aimed at minimizing the risk associated with aleatory uncertainty in pilot 

behavior (behavioral patterns of the first type – see Introduction) include constructing the cockpit 

interior and the human-machine interface according to ergonomic principles. These principles 

are established in existing standards and are being developed through ongoing research – some 

aspects of ergonomic design are discussed in the author’s book (Spirochkin 2023). 

Organizational measures are implemented in accordance with national and international 

regulatory documents, for example, (Air Code 1997), (CFR Part 91), (ICAO 2020). These 

measures cover pilot education and training, selection based on professional suitability criteria 

upon recruitment and subsequent certification, periodic physical and mental health screening 

(Yakimovich 2024), pre-flight health checks of pilots, as well as the implementation of safety 

culture in airlines. Important elements of the latter include the private and commercial pilot 

responsibility to perform IMSAFE health assessment (FAA 2023; Kingsky Flight Academy 

2023) and mutual monitoring achieved through the presence of two pilots in the cockpit. 

Regarding the second type of negative human behavior patterns, the potential 

manifestation of which is characterized, rather, by epistemic uncertainty, but is, in principle, 

predictable (see Introduction), design measures to reduce risk are limited. They mainly include 

protection against intruders entering the cockpit or against penetration of small arms bullets and 

fragments of explosive devices with specified parameters (CFR Part 25, § 25.795). 

Organizational measures cover profiling carried out by airport security services to identify 

intruders, as well as the use of technical means for screening passengers and baggage. 
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In the event of an anthropogenic critical situation of any origin during aircraft flight, the 

traditional approach to flight safety, cultivated in civil aviation, is applied. This approach 

assumes that any hazards in flight, including those caused by crew errors, must be managed by 

highly qualified pilots and their appropriate training (ICAO, 2020). However, this approach, as 

well as the design and organizational measures described above, cannot ensure safety across the 

entire range of possible anthropogenic critical situations. This disappointing conclusion is 

confirmed by the list of aviation catastrophes in Table 1. Moreover, the existing system of 

ensuring flight safety in civil aviation, while generally quite reliable, apparently cannot 

guarantee the prevention of any anthropogenic critical situation or a safe exit from it in the 

future. Such a guarantee is hindered by the very nature of human factors, which are insufficiently 

studied and limited in control. 

2.2 Alternatives 

Understanding the limitations of managing potential negative manifestations of human factors in 

civil aviation motivates the search for alternatives to traditionally used approaches. 

In situations created by humans in flight, an alternative approach can be implemented 

through intervention in the process of human control, which has become inadequate, by the 

automatic part of the human-machine system. The form of intervention may vary depending on 

the specifics of the situation. For example, if the cause of a critical situation is the unintentional 

erroneous actions of the pilot, for example, due to a lack of understanding of the complex flight 

situation, but these actions do not create an instantaneous threat of an accident, then the 

intervention can be “soft” – in the form of a recommendation to the pilot to correct his actions or 

in a slight automatic modification of the pilot’s control actions to improve the flight (Rogalski 

2010). 

In situations of a more serious nature and rapidly developing in a negative direction, their 

development can be stopped and a safe outcome ensured by blocking dangerous human behavior 

and transferring aircraft control to automatic mode. This “hard” intervention can also be used in 

a critical situation of the first category if the pilot did not follow the recommendation and (or) 

missed the time to correct his errors. The second type of intervention is of primary interest, since 

it is the most complex and applicable to the most extreme cases. For cases such as an obvious 

hijacking attempt or an aircraft deviation from its flight plan noticed by the air traffic control 

center, not attributable to the actions of the authorized flight crew, a number of technical 

solutions have been proposed – see, for example (Pizzo 1974; Shear 2003; Gleine 2005; Conner 

2009). These solutions are typically based on the crew’s or air traffic controllers’ assessment of 

the critical situation, as well as their involvement in control, including remote control of the 

aircraft from the ground. To the author’s knowledge, none of the proposed solutions have been 

implemented in serial products. 

The alternative proposed in this article is the situational replacement of human control, 

which turns out to be insufficiently reliable or even dangerous, with automated control. This idea 

goes beyond the traditional design and organizational measures used in civil aviation. It only 

partially overlaps with the alternative technical solutions presented in the aforementioned 

publications. The approach implementing this idea is aimed at ensuring safety in the entire range 

of the anthropogenic critical situations and is based, rather, on the philosophy of space 

technology.  Given the extreme nature of the physical processes when launching a spacecraft into 
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orbit or re-entering the atmosphere, as well as the complexity of maneuvers in orbit, which limits 

the control capabilities of the human operator, this philosophy provides for predominantly 

automatic control. The participation of the human operator in control is only an option, 

implemented in a limited number of space operations. 

For example, no cosmonaut (pilot) was present on board the Soviet aerospace shuttle 

Buran during its test flight and return to Earth on November 15, 1988. Its landing on the airfield 

runway was carried out automatically (Brovkin and Kravets 2014). A similar concept is currently 

being implemented to varying degrees in unmanned aerial vehicles, including military ones. 

However, the approach described below differs from fully automatic control of an aircraft. Its 

essential distinguishing features are as follows: 

 the automatic control system has a special component which works simultaneously with the 

pilot – it monitors not only the flight conditions, but also carries out a kind of supervision 

over his actions, as well as the situation in the cockpit and passenger cabin from a safety point 

of view; 

 this component intervenes in the control performed by the pilot when a critical situation arises 

and carries out autonomous actions – up to the complete exclusion of the pilot from the 

control loop and the implementation of other protective measures. 

To ensure this situational takeover of control, an aircraft – plane, helicopter or airspace 

vehicle – should be designed as a human-machine system with a high level of robotization. The 

special component of the automatic control system should be capable to recognize critical 

situations (in the context under consideration, anthropogenic), determine an automatic control 

algorithm adequate to a specific situation and aimed at a safe outcome from it, and also perform 

appropriate control actions. All these functions must be carried out in real flight time. The 

current level of science and technology makes it possible to implement the component in 

question as part of an on-board automatic control system. 

The current stage of R&D carried out in this direction with the participation of the author 

includes an engineering formulation of the problem and an analysis of the possibilities of its 

solution. 

3 THE PROBLEM STATEMENT 

The problem of situational takeover of control when an anthropogenic critical situation arises in 

flight in order to ensure a safe way out of it can be formulated as follows: it is necessary to equip 

the onboard automatic control system with a special component that must solve three tasks, or 

lower-level problems, in real time: 

1) recognition of the situation; 

2) determination of the algorithm for managing the situation and 

3) implementation of this algorithm. 

The first task is essentially similar to that solved during the investigation of an aviation 

accident post-factum, but differs from it because it must be solved directly in flight, and the 

result of the solution must be unambiguous – in the form of an algorithm of automatic actions 

that would ensure a safe way out of the situation. Reliable recognition of the situation in both 

cases requires information obtained through several channels: sound recordings, video data, and 

sensor data characterizing  the flight parameters,  as well  as  control actions  and  the state of the  
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aircraft systems. All sounds in the aircraft cockpit are currently gathered by the cockpit voice 

recorder (CVR) and sensor data by the flight data recorder (FDR). These recordings assist 

accident investigators. Video recordings of the cockpit or passenger cabin are not generally 

made. 

Automatic recognition of the situation in real time is possible using electronic processor 

devices capable of identifying certain markers (or patterns) in the data coming through each 

channel that characterize its occurrence and course, and of generating integrated judgments about 

the nature and probable development of the situation. The solution to this task (the first of the 

low-level problems in our list) is, according to available information, in the early stages of 

research and development in global civil aviation. No serial-produced electronic devices of this 

kind were found. 

The second low-level problem that requires a solution after recognizing an anthropogenic 

critical situation is to determine the algorithm for managing it in order to achieve a safe outcome 

(a safe way out of the situation). Such algorithm should provide for the following groups of 

operations: 

 blocking dangerous or potentially threatening actions of pilots and (or) passengers; 

 transferring aircraft control exclusively to automatic mode and 

 performing the automatic control with a certain spatial scheme of force application and time 

profile. 

The solution to this problem may not be easy, given the variety of critical situations that 

may arise in flight due to human fault. For the second problem, as for the first, no ready-made 

solutions applicable to the entire range of possible situations were found in the available sources 

of information. It is reasonable to assume that the algorithm appropriate to a particular situation 

can be determined by selecting from a pre-developed set of algorithms, taking into account 

established criteria of applicability and effectiveness. 

The selected algorithm must be implemented (the third of the low-level problems in the 

list above) by the relevant control circuits including actuators and secondary flight controls, that 

are capable of generating the necessary control forces. Air vehicles are currently equipped with 

control circuits that use mechanical, hydraulic or electromechanical actuators and aerodynamic 

rudders. These elements can produce the control actions needed to manage some critical 

situations. However, in the event of failure of the aerodynamic secondary controls, their 

actuators, or the entire control loop, there are no proven technical solutions that guarantee a safe 

outcome. In such cases, other design solutions are required. 

The absence of ready-made technical solutions on a number of issues indicates the 

significant novelty of the problem at hand. There is an obvious need to develop appropriate 

practical proposals for solving these issues in order to create the required component of the 

automatic control system for an aircraft. The proposals should cover solutions to the following 

tasks: 

1) implementation of video recording of the situation in the cockpit and passenger cabin; 

2) development of methods for recognizing anthropogenic critical situations in real time using 

all three data recording channels: CVR, FDR and video; 

3) an experimental study of the sufficiency of information received through these channels, and 

in case of insufficiency, a proposal to obtain additional information; 
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4) embodiment of recognition methods in on-board electronic devices (including the choice of 

the most effective combination of software and hardware); 

5) development of control algorithms for a conceivable set of anthropogenic critical situations, 

including all three groups of operations that must be performed in real time, and a technique 

for selecting the best algorithm for a specific situation using certain selection criteria; 

6) development of appropriate control circuits for the implementation of these algorithms, 

including actuators and elements generating control forces; 

7) development of the architecture of an on-board automatic control system for anthropogenic 

critical situations, and linking it with the flight control systems currently in use or under 

design. 

4 ANALYSIS OF THE SOLVABILITY OF THE PROBLEM 

The analysis of the solvability of the problem of creating a component of an aircraft automatic 

control system for managing anthropogenic critical situations is carried out by considering the 

individual tasks within this problem, which are listed at the end of the previous section. 

The first of these tasks (implementation of video recording) seems quite simple from a technical 

point of view. However, as attempts to equip cockpits with video cameras have shown, pilots are 

opposed to such measures, and overcoming their resistance can be a significant organizational 

challenge. The solution lies in the intersection of industrial and organizational psychology and 

maintaining a safety culture in airlines. 

Methods for recognizing anthropogenic critical situations based on available flight 

records from CVR and FDR (see the second task in our list) have so far been developed mainly 

for use in aviation accident investigations. In particular, it is possible to recognize the mental 

state of pilots by analyzing the recording of their conversations in the cockpit (Yakimovich 

2025b). There are also attempts to identify abnormal pilot behavior based on data from FDR, 

characterizing the process of manual control through deviations of the aerodynamic secondary 

controls in an emergency situation (Klyuev 2024). The key issue for the use of these methods in 

flight conditions is their applicability on board an aircraft and in real time. 

Information obtained from the CVR, FDR, and video (if video recording is feasible) may 

be insufficient to recognize critical situations caused by certain unhealthy conditions of the pilot, 

his inaction, or suicidal intention, especially when these conditions have no audible or visible 

signs of manifestation. If the pilot is alone in the cockpit, and if he loses consciousness, remains 

silent, or shows no visible intention, it is extremely difficult to determine what is happening to 

him based on this information. Given such situations, it may be necessary to conduct 

experimental studies to find additional sources of information that can fill this gap (the third 

task). The best source of information is the one that provides a clear picture of the processes in 

the pilot’s mind that initiated the anthropogenic critical situation. 

Methods for identifying processes occurring in pilots’ minds, which are used by aviation 

psychologists in accident investigations and professional suitability assessments (Yakimovich 

2024, 2025a, 2025b), are unlikely to be applicable to recognizing critical situations in flight. 

However, these processes must inevitably manifest themselves in some physical, but non-

mechanical, phenomena, which, if identified, can be considered diagnostic signs. Such signs 

could include,  for example,  specific patterns  in  the electromagnetic field  emitted by the brain. 
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Despite the weak intensity of the electromagnetic field generated by neurophysiological 

processes, modern technology makes it possible to record it using instrumental methods. It is 

possible that additional sources of information required for reliable recognition of some 

anthropogenic critical situations in real time should be based on the development of these 

methods and their implementation in the automatic control systems of aircraft. 

The solution to the fourth task (embodiment of recognition methods in on-board 

electronic devices) should involve the choice of a combination of software and hardware based 

on the criteria of their seamless inclusion in the automatic control system of aircraft and the 

minimum time spent on recognizing a critical situation. 

When solving task 5 (development of control algorithms for a conceivable set of 

anthropogenic critical situations and a technique for selecting the best algorithm for a specific 

situation), it is necessary to take into account: 

 the nature of each critical situation in question and the human behavioral parameters 

characterizing it; 

 variables describing the current flight conditions; 

 the current state of the aircraft in terms of operability and safety (integrity, controllability, 

degradation of the properties of elements, etc.); 

 the control forces necessary to implement a safe way out of the situation; 

 available characteristics of control circuit elements; 

 changeability of the situation over time and the time reserve available for control actions; 

 the emergence of additional loads at a certain combination of spatial scheme of control forces 

and their time profiles with the dynamic properties of the aircraft; 

 limitations imposed by the environment (flight altitude, terrain, meteorological conditions, 

etc.). 

In many respects, this task is similar to that which must be solved when ensuring the safe 

emergency landing of an aircraft (Spirochkin 2025). Therefore, a solution should likely be 

sought within the SPARS (Smart Pro-Active Resilient System) concept described there. The 

functions of the component of the aircraft automatic control system in question, which is 

intended to provide control in anthropogenic critical situations, fall within the range of functions 

of the Critical and Emergency Control System (CECS) (ibid). At this stage of R&D, it is difficult 

to determine whether it should be implemented as an autonomous subsystem within CECS or 

integrated into this system as a set of additional options. 

In any case, the component that provides control in anthropogenic critical situations will 

use, among many onboard equipment elements, actuators and elements generating control forces 

– both aerodynamic secondary flight controls and new ones not yet used in aviation. The latter 

could include, for example, small solid-fuel rocket engines similar to those applicable in 

emergency rescue systems (launch escape systems) or soft landing systems for spacecraft. 

Technical proposals for these elements can be prepared as a result of solving task 6. These 

proposals, as well as results of solving task 7, which should determine architecture of the 

component in question and its interface with the integrated Flight Control System (FCS)
2
, can 

form the content of the corresponding conceptual design. 

                                                           
2
 If the FCS is equipped with elements of AI, it is considered an Intelligent Flight Control System (IFCS) (Stengel 

1992; NASA 2002). 
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5 PREFERENCE FOR NEURAL NETWORK TECHNOLOGY 

The key features of the problem of creating a component that provides control in anthropogenic 

critical situations from the point of view of information technology are the following: 

1) the heterogeneous nature and multiplicity of data required to recognize the situation and 

determine an effective control algorithm and, thus, subject to processing; 

2) continuous updating of these data during the development of a critical situation, and, 

accordingly, the need to process them and obtain results in real time; 

3) requirement for installation of the component on board the aircraft. 

Similar features are inherent in the problem of ensuring safety during an aircraft 

emergency landing. To solve that problem, the choice was made in favor of neural network 

technology (Spirochkin 2025). This technology also appears preferable for control in 

anthropogenic critical situations. Indeed, effectively recognizing such situations is unlikely to be 

possible without the use of a neural network. The challenge lies in training it. Given the variety 

of situations, training is not an easy task, but it will be carried out not in flight conditions, but on 

the ground and in advance. 

Recognizing patterns based on a set of characteristic elements is a typical task that a 

neural network can solve. In our context, the pattern to be identified is a set of data of different 

modalities (audio, video and sensor signals). Determining an algorithm for control in an 

anthropogenic critical situation is possible using classical methods of applied mathematics and 

mechanics, including solving the differential equations of aircraft motion. However, this requires 

extensive computational resources unavailable onboard the aircraft and is not applicable under 

the time constraints typical of a developing critical situation. Using a neural network, pre-trained 

on a representative set of examples corresponding to a conceivable set of anthropogenic critical 

situations and flight conditions, ensures the algorithm can be determined with minimal time 

expenditure. 

Another preferred area of application of neural network technology is the processing of 

the results of experimental study aimed at discovering additional channels of information for the 

purpose of more reliable recognition of an anthropogenic critical situation. 

An important argument in favor of neural network technology is the ability to process 

fuzzy data, which will inevitably be present in information flows of various natures. 

It remains to be added that the development of a neural network and its training for the 

above-mentioned applications should be an integral part of the project to create the control 

system component in question. An aircraft that implements the control in anthropogenic critical 

situations acquires the properties of a robotic system and can be called a “smart” aircraft. The 

idea described is reminiscent of the first of the three fundamental Rules of Robotics, formulated 

by Isaac Asimov in his book I, Robot: “A robot may not injure a human being, or, through 

inaction, allow a human being to come to harm.” 

CONCLUSION 

The presented research shows that the design and organizational measures currently used in civil 

aviation do not ensure safety across the full range of critical situations that may arise during an 

aircraft  flight  due  to  negative  manifestations  of  human  factors.  Aviation  accident  statistics 
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confirm the existence of the problem. The proposed solution to it is to give the aircraft the 

properties of a “smart”, i.e. highly robotic system, capable of recognizing the emergence of an 

anthropogenic critical situation on board and taking control to ensure a safe outcome. The article 

describes the engineering formulation of the problem of creating a special on-board automatic 

control subsystem intended to perform the corresponding functions. The formulation of the 

problem is accompanied by an analysis of its technical feasibility. 
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Abstract 

Artificial intelligence (AI) is rapidly emerging as a transformative technology in the nuclear 

energy sector, offering unprecedented opportunities to enhance safety, operational efficiency, 

and reliability. This overview examines the main domains where AI is being implemented in 

nuclear power plants, including predictive maintenance, process optimization, digital twins, and 

autonomous robotics. AI-driven predictive maintenance enables early detection of equipment 

anomalies, reducing unplanned shutdowns and improving plant reliability. Process optimization 

through AI allows for dynamic adjustment of reactor operations, maximizing electricity 

generation while minimizing fuel consumption and equipment’s wear. The development of 

digital twins – virtual replicas of physical assets – facilitates advanced simulation, operator 

training, and risk-free testing of modifications. Autonomous robotic systems, powered by AI, are 

revolutionizing inspections and interventions in hazardous environments, significantly reducing 

human exposure to radiation. The integration of AI into nuclear safety and accident management 

is also discussed, highlighting its role in early warning systems, reduction of human error, and 

proactive risk analysis. Despite its promise, the adoption of AI faces challenges related to 

cybersecurity, regulatory compliance, and the need to build trust among operators. Real-world 

examples from leading industry players demonstrate the tangible benefits and ongoing evolution 

of AI applications in nuclear energy industry. The review concludes that while AI will not 

replace human expertise, it will serve as a powerful augmentation tool, supporting safer, more 

efficient, and more resilient nuclear power operations. 

Keywords: AI, data analytics, digital twins, nuclear safety optimization, accident management 

support, predictive maintenance, robotics, risk analysis, design optimization, human-machine 

interface, decision support systems, risk-free testing, continuous monitoring, cybersecurity, 

regulatory compliance. 

1 INTRODUCTION 

Artificial intelligence (AI) is increasingly recognized as a transformative force in the nuclear 

energy sector, offering the potential to significantly enhance safety, operational efficiency, and 

reliability of nuclear power plants. The nuclear industry, characterized by its conservative 

approach and stringent safety requirements, has traditionally been slow to adopt new 

technologies. However, the growing complexity of plant operations and the need for improved 

risk  management  have accelerated  the development  and deployment  of  AI-based  solutions in 
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several critical areas. These critical areas, which will examine in more detail with examples 

further on, can be summarized as follows (Tuhin 2025; Ejigu et al. 2024): 

1. Reactor Design Optimization 

AI techniques, including generic algorithms and neural networks, are used to optimize 

reactor core configurations, fuel arrangements, and thermal-hydraulic parameters to improve 

efficiency and safety. 

2. Autonomous Control and Operation 

AI enables real-time monitoring and autonomous control of reactor systems, reducing 

reliance on human operators and enhancing responsiveness to abnormal conditions. 

3. Equipment Prognostics and Health Management 

Machine learning models predict equipment failures and assess component health, 

allowing for predictive maintenance and reducing downtime. 

4. Nuclear Safety Analysis and Accident Management 

AI supports risk assessment, scenario modeling, and decision-making during 

emergencies, improving the robustness of safety systems. 

5. Big Data Analytics for Plant Monitoring 

AI and big data computing are used to process vast amounts of sensor and operational 

data to detect anomalies, optimize performance, and support decision-making. 

6. Digital Twin Technology 

Digital twins—virtual replicas of physical systems—are enhanced by AI to simulate and 

predict plant behavior under various conditions, aiding in diagnostics and planning. 

7. Human-Machine Interface Enhancement 

AI improves operator support systems, reducing cognitive load and enhancing situational 

awareness through intelligent interfaces and decision aids. 

AI technologies, including machine learning, deep learning, and advanced data analytics, 

are now being integrated into nuclear facilities to support decision-making, automate routine and 

complex tasks, and provide predictive insights that were previously unattainable through 

conventional methods (Kantarcioglu 2024; Ejigu et al. 2024). This paradigm shift is driven by 

technological advancements and the increasing availability of large-scale operational data, which 

AI systems can leverage to uncover hidden patterns, optimize processes, and proactively address 

safety concerns (Jendoubi & Asad 2024; Ejigu et al. 2024). 

2 MAIN TECHNOLOGICAL AREAS FOR AI IMPLEMENTATION  

The implementation of AI in the nuclear industry encompasses a wide range of applications, all 

centered around the analysis of vast and complex datasets generated by plant operations. AI 

systems are capable of processing real-time data streams from thousands of sensors distributed 

throughout a nuclear facility, enabling the identification of subtle anomalies, prediction of 

equipment failures, and automation of both routine and emergency procedures. By leveraging 

sophisticated algorithms, AI can reveal correlations and trends that are often missed by human 

operators, thereby supporting more informed and timely decision-making. These capabilities are 

particularly valuable in environments where safety is paramount and the consequences of human 

error or equipment malfunction can be severe. 
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2.1 Predictive Maintenance 

One of the most promising applications of AI in nuclear power plants is predictive maintenance, 

which utilizes machine learning algorithms to analyze real-time operational data from critical 

equipment such as pumps, turbines, and valves (Gohel et al. 2021; Walker et al. 2023). These 

algorithms are trained to recognize the normal operating states of various components by 

continuously monitoring parameters like vibration, temperature, pressure, and flow rates. When 

deviations from established norms are detected, the system can alert operators to potential issues 

long before they escalate into failures. This approach enables a shift from traditional scheduled 

maintenance to a more dynamic, condition-based strategy that optimizes the timing of repairs 

and replacements. The result is a substantial reduction in unplanned shutdowns, lower 

maintenance costs, and enhanced safety, as critical failures are prevented before they occur 

(Picot 2023; Gruenwald et al. 2024). Furthermore, predictive maintenance supported by AI 

contributes to the overall reliability of the plant, ensuring that essential systems remain 

operational and reducing the risk of accidents caused by equipment malfunction (Gohel et al. 

2021). 

2.2 Optimization of processes and efficiency 

AI-driven optimization extends beyond maintenance to encompass the entire spectrum of plant 

operations, including power management, fuel cycle optimization and the efficiency of cooling 

systems (Zhang et al. 2024; Deng et al. 2024). By integrating data from operational sensors, 

electricity grid consumption patterns, and external factors such as weather forecasts, AI systems 

can recommend optimal operating modes for reactors and turbines (Seurin et al. 2023). 

This holistic approach allows nuclear plants to maximize electricity generation while 

minimizing fuel consumption and equipment wear, thereby improving both economic and 

environmental performance (Seurin et al. 2023; Picot 2023). Advanced AI models can also 

simulate various operational scenarios, enabling operators to evaluate the impact of different 

strategies on plant efficiency and safety (Zhang et al. 2024; Deng et al. 2024). The continuous 

feedback provided by these systems supports adaptive management, allowing plants to respond 

dynamically to changing grid demands and operational conditions without compromising safety 

margins (Seurin et al. 2023). 

2.3 Digital twins 

The concept of digital twins represents a significant advancement in the application of AI to 

nuclear energy. A digital twin is a highly detailed, virtual replica of a physical asset – such as an 

entire nuclear power plant or individual components – continuously updated with real-time data 

from operational sensors (Kropaczek et al. 2023; Mondal et al. 2024). This technology enables 

operators to simulate a wide range of scenarios, including accident conditions, equipment 

modifications, and routine operations, in a risk-free virtual environment (Yadav et al. 2021; Al. 

Rashdan et al., 2022). 

Digital twins also play a crucial role in operator training, providing an immersive and 

realistic environment where personnel can practice responding to complex situations and develop 
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the skills necessary to manage both normal and emergency operations (Kropaczek et al. 2023; 

Mondal et al. 2024). 

Additionally, proposed design changes can be tested virtually before implementation, 

allowing for a thorough assessment of their impact on plant safety and efficiency (Kropaczek et 

al. 2023). 

2.4 Process management 

AI-driven process management in nuclear power plants encompasses intelligent fuel 

management, dynamic efficiency optimization, and advanced nuclear waste management 

strategies. These applications leverage real-time data and predictive analytics to optimize plant 

performance while maintaining strict adherence to safety standards. 

2.4.1 Intelligent fuel management 

AI algorithms are increasingly used to calculate the optimal configuration of fuel assemblies 

within the reactor core, balancing the goals of maximum fuel burnup and strict compliance with 

safety regulations. By simulating various core configurations and operational scenarios, AI can 

recommend fuel loading patterns that enhance efficiency, extend fuel life, and minimize waste 

generation (Zhang et al. 2024). This intelligent approach to fuel management not only improves 

the economic performance of nuclear plants but also supports the safe and sustainable operation 

of reactors over their lifespan (Deng et al. 2024). 

2.4.2 Dynamic efficiency 

The ability of nuclear plants to operate flexibly and adapt their output to the needs of the 

electricity grid is critical for modern energy systems. AI systems enable dynamic efficiency by 

continuously monitoring grid demand, operational parameters, and external factors such as 

weather conditions (Seurin et al. 2023). By adjusting reactor and turbine settings in real time, AI 

ensures that plants operate within safe limits while maximizing electricity generation and 

minimizing wear on equipment (Picot 2023). This adaptive management capability is 

particularly valuable in the context of increasing renewable energy integration, where grid 

stability and responsiveness are essential. 

2.5 Nuclear waste management 

The management of spent nuclear fuel and radioactive waste is a complex logistical challenge 

that requires thorough tracking, categorization, and long-term planning. AI technologies are 

being deployed to streamline these processes, providing automated systems for inventory 

management, waste classification, and the optimization of storage and disposal strategies. By 

integrating data from multiple sources and simulating various scenarios, AI can help ensure the 

safe and efficient handling of nuclear waste, reducing risks to both personnel and the 

environment (Ejigu et al. 2024). 

3 THE ROLE OF AI IN NUCLEAR SAFETY AND ACCIDENT MANAGEMENT 

The integration of AI into nuclear safety and accident management represents a paradigm shift in 

how risks are identified, assessed, and mitigated within nuclear facilities. Rather than replacing 

human expertise,  AI  acts  as a powerful  augmentation tool,  providing  operators  and engineers  
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with advanced analytical capabilities and real-time decision support. This synergy between 

human judgement and machine intelligence is crucial, given the complexity and high stakes of 

nuclear operations. 

AI systems can process vast amounts of operational and historical data, enabling the early 

detection of anomalies, the reduction of human error, and the proactive identification of 

emerging risks that might otherwise go unnoticed. By leveraging global incident databases and 

learning from operational experiences across the nuclear industry, AI can help standardize best 

practices and improve the overall safety culture within nuclear organizations. 

3.1 Nuclear safety 

AI’s contribution to nuclear safety is multifaceted, encompassing early warning systems, human 

error reduction, and proactive risk analysis. 

3.1.1 Early warning 

Preventive maintenance systems powered by AI, such as vibration monitoring and thermal cycle 

tracking, serve as sophisticated early warning mechanisms for critical equipment (Gohel et al. 

2021; Walker et al. 2023). By continuously analyzing sensor data, these systems can detect 

subtle deviations from normal operating conditions – such as changes in vibration patterns or 

temperature fluctuations that may indicate impending equipment failure (Walker et al., 2023).  

For example, an AI system might identify an anomaly in a main circulation pump weeks 

before it becomes a safety concern, allowing for timely intervention and repair (Gruenwald et al. 

2024). This predictive capability is especially vital for safety-related components, which are 

routinely tested and monitored to ensure their reliability in emergency situations (Walker et al. 

2023). The early identification of potential failures not only prevents costly unplanned 

shutdowns but also significantly reduces the risk of accidents caused by equipment malfunction 

(Gohel et al. 2021). 

3.1.2 Reduction of human error 

Human error remains a leading contributor to nuclear incidents and accidents, often arising from 

procedural lapses, misinterpretation of data, or cognitive overload during high-stress situations 

(Shanahan et al. 2023; Kim 2024). AI systems can function as “co-pilots” in the control room, 

continuously monitoring operator actions and providing real-time feedback if a procedure is 

performed incorrectly or if an action could lead to a risky situation (Kim 2024). By cross-

referencing operator inputs with established protocols and procedures and historical incident 

data, AI can issue timely warnings and suggest corrective actions, thereby reducing the 

likelihood of mistakes (Kim 2024). This collaborative approach also supports ongoing training 

and skill development for plant personnel (Kropaczek et al. 2023). 

3.1.3 Proactive risk analysis 

AI’s ability to analyze incident reports and operational data from nuclear power plants 

worldwide enables a proactive approach to risk management (Ejigu et al. 2024). By identifying 

recurring patterns, hidden correlations, and emerging threats, AI systems can uncover risks that 

may be overlooked by traditional human analysis (Ejigu et al. 2024; CNSC&ONR&NRC 2024). 

These   insights   (facts  from  incidents  or  accidents,   conclusions   and recommendations)   are 
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disseminated through international platforms such as the International Atomic Energy Agency’s 

INIS system, facilitating the sharing of lessons learned and the continuous improvement of 

safety practices across the industry. Proactive risk analysis supported by AI not only enhances 

the resilience of individual plants but also contributes to the global advancement of nuclear 

safety standards (CNSC&ONR&NRC 2024). 

3.2 Accident management 

Accident management is arguably the most critical area where AI can deliver substantial benefits 

to nuclear safety and operational resilience. AI-powered decision support systems (DSS) and 

robotic intervention technologies are transforming the way nuclear plants respond to 

emergencies, enabling faster, more informed, and more effective actions during crisis situations. 

3.2.1 Decision Support Systems (DSS) 

During an accident, operators are confronted with an overwhelming volume of data and must 

make rapid decisions under intense pressure (IAEA 2025). AI-based DSS can process thousands 

of signals in real time, analyze the evolving situation, and predict the most likely progression of 

the event, such as the spread of radioactive contamination following a primary circuit leak 

(IAEA 2025; Shanahan et al. 2023). These systems draw on emergency plans, historical incident 

data, and advanced simulations to recommend the most effective response strategies, presenting 

operators with a shortlist of optimal actions supported by robust data analysis (IAEA 2025). 

While the final decision remains with human operators, the guidance provided by AI-based DSS 

enhances situational awareness, reduces cognitive load, and supports more effective crisis 

management (Shanahan et al. 2023). 

3.2.2 Robotic intervention 

AI-powered autonomous systems and robotics are revolutionizing the way inspections, 

maintenance and repairs are conducted in nuclear facilities, particularly in areas with high 

radiation levels where human access is hazardous or impossible. Equipped with advanced 

computer vision and image analysis capabilities, these robots can identify structural defects such 

as cracks, corrosion or other anomalies in equipment and infrastructure (Shanahan et al. 2023; 

IAEA 2025). 

In severe accident scenarios, such as those experienced at Fukushima or Chernobyl, the 

deployment of AI-powered robots can be lifesaving (Shanahan et al. 2023; IAEA 2025). These 

autonomous systems are capable of entering highly radioactive environments to assess damage, 

close valves, perform repairs, and carry out other critical tasks that would be lethal for human 

responders (Shanahan et al. 2023). Equipped with advanced sensors and computer vision, AI-

controlled robots provide real-time feedback to operators, enabling precise and timely 

interventions during emergencies (IAEA 2025). 

The deployment of AI-controlled robots significantly reduces the radiation exposure of 

personnel, enhances the precision and reliability of inspections, and enables the execution of 

complex tasks in environments that would otherwise be inaccessible (IAEA 2025). In addition to 

routine maintenance, autonomous systems are increasingly being used for emergency response, 

providing real-time situational awareness and performing critical interventions during accident 

scenarios (Shanahan et al. 2023). 
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4 CHALLENGES TO AI IMPLEMENTATION IN NUCLEAR IDUSTRY 

Despite its transformative potential, the implementation of AI in the nuclear industry is not 

without significant challenges. Key issues include cybersecurity, regulatory compliance, and the 

establishment of trust between operators and AI systems. 

4.1 Cybersecurity 

AI-related systems in nuclear facilities must be rigorously protected against cyber threats, given 

the potential consequences of unauthorized access or manipulation. The integration of AI 

introduces new attack vectors, including vulnerabilities in data transmission, algorithm integrity, 

and system interfaces (CNSC&ONR&NRC 2024). Ensuring robust cybersecurity requires the 

adoption of advanced encryption, continuous monitoring, and the development of resilient 

architectures that can withstand sophisticated hacking attempts. Regulatory bodies are 

increasingly focused on establishing guidelines and standards for the secure deployment of AI in 

critical infrastructure, recognizing the importance of safeguarding both operational and safety-

related systems (CNSC&ONR&NRC 2024). 

4.2 Regulations 

Regulatory compliance is a major hurdle for the adoption of AI in nuclear power plants, 

particularly for safety-critical applications. Nuclear regulators demand that all safety-related 

systems be fully understandable, predictable, and transparent - a requirement that is often at odds 

with the “black box” nature of many AI models (CNSC&ONR&NRC 2024). The lack of 

accessible source code and the complexity of machine learning algorithms pose significant 

challenges for verification, validation, and licensing. To address these concerns, the industry is 

exploring the development of explainable AI (XAI) techniques and collaborative frameworks 

that facilitate regulatory oversight while preserving the benefits of advanced analytics 

(CNSC&ONR&NRC 2024). 

4.3 Trust 

Building trust between operators and AI systems is essential for its successful implementation 

and adoption. Operators must have confidence in the recommendations provided by AI, which 

requires extensive testing, validation, and ongoing involvement in the development and 

deployment process. Transparent communication, user-friendly interfaces, and continuous 

training are critical for fostering trust and ensuring that AI systems are perceived as reliable 

partners rather than opaque or unpredictable entities (Mondal et al. 2024). The establishment of 

trust not only supports operational effectiveness but also enhances the overall safety culture 

within nuclear organizations (Kropaczek et al. 2023). 

5 EXAMPLES OF IMPLEMENTING AI IN NUCLEAR ENERGY IDUSTRY 

The practical implementation of AI in the nuclear industry is rapidly expanding, with a diverse 

array of applications and pilot projects now underway across the globe. These initiatives span 

predictive  maintenance,  process optimization,  digital  twins,  robotics,  regulatory  compliance, 
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operator training, nuclear waste management, and grid integration, demonstrating the versatility 

and transformative potential of AI in nuclear power. 

5.1 Predictive maintenance and real-time monitoring 

AI-driven predictive maintenance is now a cornerstone of modern nuclear plant operations. For 

example, in USA Exelon (now Constellation Energy Group) has deployed machine learning 

algorithms for real-time monitoring and predictive maintenance at several of its nuclear facilities, 

including Peach Bottom NPP and Limerick NPP in Pennsylvania. These systems analyze sensor 

data to detect anomalies and forecast equipment failures, enabling maintenance to be scheduled 

proactively and reducing unplanned outages. Blue Wave AI Labs estimates that such tools save 

over $1.6 million per year per reactor by cutting fuel costs, minimizing downtime, and reducing 

time spent on analysis and planning (Walker et al. 2023; Gruenwald et al. 2024; Jendoubi & 

Asad 2024; Picot 2023; Nuclear Business Platform 2024). 

Similarly, the U.S. Department of Energy’s Idaho National Laboratory has demonstrated 

explainable AI technologies for predictive maintenance, focusing on performance, explainability, 

and trustworthiness. These systems have been shown to improve decision-making and reduce 

operational costs (Walker et al. 2023). 

5.2 Process optimization and grid integration 

AI is increasingly used to optimize plant operations, including dynamic load-following and grid 

integration. For instance, AI systems at Constellation Energy and other operators process 

operational data, grid demand, and weather forecasts to recommend optimal reactor and turbine 

settings, maximizing electricity generation while minimizing fuel consumption and equipment 

wear (Seurin et al. 2023; Jendoubi & Asad 2024; Nuclear Business Platform 2024).  

AI also supports flexible operation, allowing nuclear plants to adapt output to grid needs, 

which is critical as other renewable energy sources (wind farms, solar plants) become more 

prevalent (Jendoubi & Asad 2024). 

5.3 Digital twins and simulation 

Digital twin technology is revolutionizing nuclear reactor management. In US, Argonne National 

Laboratory has developed advanced digital twins for reactors, including the Experimental 

Breeder Reactor II and the Fluoride-salt-cooled High-temperature Reactor, using graph neural 

networks to simulate reactor behavior under various conditions. These digital twins enable 

continuous monitoring, predictive maintenance, and real-time decision-making, enhancing safety 

and efficiency (Kropaczek et al. 2023; Mondal et al. 2024; Cohen 2025; Hu et al. 2025; Huber 

2025). 

In UK, Rolls-Royce is integrating digital twins into the design and operation of its Small 

Modular Reactors (SMRs), allowing for risk-free simulation of operational scenarios, prediction 

of maintenance needs, and optimization of plant performance (Kropaczek et al. 2023; Mondal et 

al. 2024). 
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5.4 Robotics and autonomous systems 

AI-powered robotics are increasingly deployed for inspection, maintenance, and 

decommissioning in hazardous environments. The UK’s RAIN Hub and Robotics and AI 

Collaboration Laboratory (RAICo) have developed and deployed first-of-a-kind robots at 

Sellafield, Dounreay, Chernobyl, and Fukushima, performing autonomous radiometric surveys 

and remote handling tasks that would be dangerous for humans (Shanahan et al. 2023; Lennox 

2021; Lopez Pulgarin et al. 2025). 

Lancaster University and other research groups have proposed cyber-physical 

architectures for nuclear decommissioning, integrating sensor networks, robotics, and AI for 

efficient and safe operations (Shanahan et al. 2023). 

5.5 Nuclear waste management 

AI is transforming nuclear waste management by optimizing waste classification, treatment, 

storage, and disposal. Advanced machine learning algorithms enhance the precision of waste 

categorization and support predictive modelling for risk assessment and strategic planning (NEA 

2023; Abulifa et al. 2025; Chenniappan & Devarajan 2024). AI-driven platforms, such as 

NuclearAI, use graph neural networks and the integration of the neutron-physics computer code 

Monte Carlo to model isotopic transmutation, minimizing radiotoxicity and heat load (Boyyey 

2025). 

In the US, multi-agent systems with AI are also being developed for regulatory 

compliance and decision-making in nuclear waste management, as demonstrated in a case study 

of the uranium mining area near Winslow, Arizona (Chang et al. 2025). 

5.6 Operator training and simulation 

AI is increasingly used for operator training and simulation. Argonne National Laboratory has 

explored the use of generative AI models to enhance operator interaction with diagnostic 

information, providing clear explanations of faults and supporting decision-making (Vilim et al. 

2024; Jendoubi & Asad 2024). AI-guided reasoning-based operator support systems, such as 

those developed by Hanna et al. (2024), use logic programming to assist operators in fault 

identification and management during incidents. 

5.7 Administrative automation and regulatory compliance  

AI is also being leveraged to streamline regulatory compliance and enhance cybersecurity. 

Platforms like Nuclearn
3
 automate documentation, compliance, and procedure writing, freeing 

engineers from repetitive administrative tasks and increasing engineering capacity. Nuclearn’s 

Agentic AI and AI Marketplace solutions provide tools for automating regulatory 

correspondence, license extensions, and compliance screening (Fox & Vincent 2025; Connor 

2025). 

The U.S. Nuclear Regulatory Commission (NRC), UK Office for Nuclear Regulation 

(ONR), and Canadian Nuclear Safety Commission (CNSC), as well as the International Atomic 

Energy Agency (IAEA),  have published  guidelines and  principles  for deploying  AI in nuclear 
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applications, emphasizing safety, security, and transparency (CNSC&ONR&NRC 2024; IAEA 

2025). 

5.8 Fuel management and core design 

AI is being applied to optimize nuclear core and fuel designs. Vattenfall Nuclear Fuel in Sweden 

has explored the use of neural networks for in-core fuel management, predicting key reactor 

parameters and accelerating design evaluation (Åsman 2025). Texas A&M University has 

developed advanced thermo-mechanical phase-field models to simulate fuel behavior under 

stress, supporting longer fuel cycles and improved efficiency (Aquino et al. 2025). 

6 CONCLUSION 

The integration of AI into the nuclear energy sector marks a pivotal advancement in how nuclear 

facilities are operated, maintained, and safeguarded. As demonstrated by a growing number of 

real-world applications, AI is no longer a theoretical concept but a practical tool that is actively 

enhancing nuclear safety and accident management, predictive maintenance, process 

optimization, digital twin development, autonomous robotics, operator training, regulatory 

compliance, and nuclear waste management. Leading operators in U.S. such as Exelon, 

Constellation Energy, along with technology partners like Westinghouse, Rolls-Royce, and 

major research laboratories, have shown that AI-driven solutions can significantly reduce 

unplanned outages, improve safety margins, serve as decision support system and optimize 

resource utilization. The deployment of digital twins and AI-powered simulation platforms 

enables risk-free testing and continuous monitoring, while robotics and autonomous systems are 

revolutionizing inspections and interventions in hazardous environments. AI’s role in nuclear 

waste management and regulatory compliance is also expanding, with advanced algorithms 

supporting more accurate classification, documentation, and strategic planning.  

Despite these advances, challenges remain in the areas of cybersecurity, regulatory 

transparency, and building trust among operators and stakeholders. Addressing these issues will 

require ongoing collaboration between industry, regulators, and technology providers, as well as 

the development of robust frameworks for explainable and secure AI. 

In summary, AI is set to become an indispensable component of the nuclear industry’s future, 

augmenting human expertise and enabling safer, more efficient, and more resilient nuclear power 

operations. Continued investment in research, pilot projects, and cross-sector investigations and 

partnerships will be essential to fully realize the transformative potential of AI in nuclear 

industry. 
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Abstract 

The article discusses a way to reduce the emotional response of pilots to the occurrence of 

abnormal situations in flight. It consists in simulating various abnormal situations on a computer 

simulator and proposing the pilot to recognize the current flight threat factor in ambiguous 

situations. To reduce emotional reactions in pilots and to prevent stress, which usually occurs 

due to the lack of understanding of which threat factor caused the abnormal situation, ICAO 

recommends developing a computer program ”Threat and Error Management” (TEM). The 

article presents a specific technology used in the design of a TEM program for one of the 

Russian airlines. 

Keywords: amygdala, emergency situation, emotional response, stress resistance, flight threat 

factors, TEM program. 

INTRODUCTION 

Usually, civil aviation pilot training programs are aimed at transferring professional knowledge 

and skills to pilots. These programs do not include special classes that can improve such mental 

qualities as stress resistance in pilots’ work. However, even with sufficient piloting skills, there 

are still problems with pilots' behavior in emergency situations. In particular, it remains unclear 

whether pilots will become stressed when they suddenly detect a dangerous flight situation, or 

whether they will respond to it relatively calmly (without stress)? At the same time, it is known 

that the effectiveness of their thinking, i.e. the speed and correctness of finding solutions to get 

out of a dangerous situation, largely depends on how strong emotions pilots will experience in an 

emergency situation. 

In this regard, the task of designing such training programs for pilots, which would be 

aimed at reducing the level of their emotional response to the emergence of dangerous situations 

in flight, becomes relevant. This article is devoted to the technology of designing such a training 

program for training civil aviation pilots with the aim of more effective interaction with aircraft 

equipment. But first, we need to consider what determines a person’s (pilot’s) stress resistance 

and whether it can be improved through special training. 

1 POSSIBILITIES OF CORRECTION OF STRESS RESISTANCE 

Many neuropsychologists believe that stress resistance is an innate quality and depends on the 

degree  of reactivity,  i.e. responsiveness  to  external influences  of  such a brain structure  as the 
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amygdala. The amygdala is part of the limbic system of the brain (Fig.1), which is generally 

responsible for a person’s emotional reactions. It is the amygdala that produces feelings of fear 

and anxiety when an external situation is perceived as potentially dangerous (Wiesel 2017). 

 

Fig. 1 Location of the amygdala in the limbic system of the brain (by O. Guy-Evans, MSc, 

reviewed by S. McLeod, PhD; https://www.simplypsychology.org) 

How quickly the amygdala will be excited and to what extent it will generate a feeling of 

fear and anxiety depends on the innate properties of the nervous system in a particular person. 

One of the properties of the nervous system is called lability: it means the speed and intensity of 

the nervous system's response to external influences. Thus, if the limbic system, including the 

amygdala, is highly labile, there will be an increased emotional reactivity (sensitivity) in 

response to external danger factors. In this case, it is said that a person is highly unstable to 

stress. Conversely, if the amygdala is less labile, the person is more resistant to stress. 

For this reason, it is impossible to change a person’s stress resistance in general, as it is a 

physiological characteristic of the individual's nervous system. However, it is possible to reduce 

their emotional response to certain professional situations, particularly dangerous emergencies. 

How can this be achieved? 

As we know, when a person finds themselves in a dangerous and unfamiliar situation, 

they tend to become more anxious than when they are in the same situation but have experienced 

it before. It is the factor of “personal acquaintance” with a particular emergency situation that 

can help prevent the pilot from becoming stressed when the situation occurs again during a 

flight. Therefore, virtual immersion of pilots in possible emergency situations (using a computer 

simulator) and training them on how to handle them can help reduce negative emotions in real 

flights. Renowned neuroscientist Catherina Pittman also says this (Pittman 2021). 

Here, it is necessary to make a small digression and explain which degree of emotional 

arousal has a positive effect on the quality of professional activity, and which degree of arousal 

has a negative effect, i.e., it impairs the process of information analysis: it narrows the scope of 

thinking, slows it down, and provokes errors in activity. 

 

https://www.simplypsychology.org/
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According to the well-known Yerkes-Dodson law of psychology, the best performance is 

achieved when a person is in a state of nervous arousal that is slightly above average. The 

average level of nervous excitement is observed in a person in a normal working condition. If 

some factors appear in the process of activity that complicate this process, then nervous 

excitement increases and the individual's mental resources are activated to solve a complicated 

task. This mental state is called the “mobilization” state, and it is characterized by an even higher 

level of mental performance than in the normal calm state of an employee. 

However, a further increase in nervous excitement leads to the development of other 

types of mental states: mental tension, then stress, and then panic. All of these conditions, unlike 

mobilization, are unfavorable for professional activity, as they are dominated by emotional 

processes in the brain that suppress (inhibit) the functioning of other mental functions. This 

manifests itself in the incomplete (limited) functioning of perception, attention, thinking, and 

memory, resulting in errors, omissions, delays, and inadequate decisions in activities. The 

phenomenon of poor mental performance under stress was clearly demonstrated in the 

experiments conducted by American psychologists Yerkes and Dodson, and later by other 

scientists (Bodrov 2006; Khanin 2010). 

Based on this, it is important for the training of civil aviation pilots to ensure that they 

experience only a state of mobilization when flight conditions become more challenging, rather 

than entering a state of stress when an emergency situation arises on board the aircraft. 

This can be achieved by immersing pilots in simulated (virtual) emergency situations that 

can be modeled on a computer simulator. It is advisable to simulate only those emergency 

situations that often cause stress. These situations are at the initial stage of any emergency, where 

the pilot needs to understand the cause of the situation and identify the threat to the flight. It is 

more difficult for a pilot to determine the true cause of a flight deviation, especially in situations 

where different threat factors may be behind the same symptoms, than it is to choose an action 

plan to deal with the situation. 

Unfortunately, many pilots have a psychological tendency to rush into correcting a 

dangerous situation as quickly as possible, which forces them to accelerate and shorten the 

process of analyzing possible flight hazards. They tend to focus on the most common flight 

hazard, such as assuming that a decrease in aircraft speed is caused by a malfunctioning autopilot 

and acting accordingly. However, the actual cause of the flight hazard may be different, such as 

icing on the speed sensors, which requires different actions from the pilot to correct the situation. 

If the pilot “struggles” with the wrong cause of an emergency, he will move the flight situation 

from the “dangerous” status to the “catastrophic” status, when the plane’s destruction becomes 

inevitable. 

A similar disaster due to the misidentification of a flight threat factor occurred, in 

particular, with the French A-330 in 2009, which crashed into the Atlantic Ocean, as well as with 

the Russian An-148, which crashed due to a collision with the ground in 2018.  

The insidiousness of some abnormal situations lies in the fact that they have the same 

initial symptoms, i.e., the same set of deviations, although they may be caused by completely 

different threat factors. In this regard, it is necessary to familiarize pilots with such “ambiguous” 

abnormal situations in advance and teach them algorithms for recognizing various threat factors 

on a computer simulator. 
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2 TRAINING PROGRAM FOR STRESS PREVENTION 

To create such a training program, the International Civil Aviation Organization (ICAO) 

provides relevant recommendations in the document “Personnel Training” – Doc. 9868, 2008 

(Appendix C). This document proposes that all airlines develop a computer program called 

“Threat and Error Management” (TEM), which is aimed at modeling various emergency 

situations in which it may be difficult to determine the threat factor to a flight, and therefore 

stress in pilots. As experience in investigating aviation accidents has shown, stress occurs when 

pilots fail to understand the true cause of an emergency situation, leading to fear of not finding 

the right way out and potentially losing themselves and their passengers. 

If the pilots are already familiar with a set of the most difficult abnormal situations to 

recognize in advance, try to analyze the possible threat factors themselves, find among them the 

actual threat factor and successfully build a plan for its parrying, then they will feel more calm 

and confident when facing a similar situation in a real flight. Due to such training on a computer 

simulator, it will be possible to lower the degree of emotional response of pilots (to prevent 

stress) to the emergence of dangerous flight situations directly in their activities. Moreover, 

moderate nervous excitement will lead to a state of mobilization that is beneficial for pilots, and 

knowledge of the algorithm for finding the current threat factor will speed up the pilot’s thinking 

process. 

A similar computer program, TEM, was developed by the Russian airline Aeroflot – 

Russian Airlines (Yakimovich 2024). To simulate 20 flight situations, the monitor displayed 

images of the A-320 instrument panels, showing various changes in the readings of the flight 

instruments, engineering displays, and emergency lights. The pilot was first presented with a 

normal flight scenario at a specific stage, followed by the onset of an abnormal situation. The 

pilot should have noticed the deviations from the normal flight mode (Fig. 2). 

After that, on the adjacent monitor, paired with the first monitor, a question was asked 

about what signs of an abnormal situation he noticed. The adjacent monitor also offered options 

for answering this question, while the first monitor retained the image of the analyzed situation.  

Next, the TEM program sequentially asked the pilot a number of other questions, which 

he had to answer (Fig. 3). 

In particular, the following questions were asked: 

1. What hypotheses can you make about the flight threat factors? 

2. What verification actions do you intend to take to test the first hypothesis (or the 

second)? 

3. Which threat factor is active in this situation? 

4. What plan of action will you choose to counter the identified threat factor? 

It is important to add that when the pilot wanted to perform virtual verification actions to 

confirm the presence of a suspected threat factor, they selected the necessary verification actions 

from the provided list. The selected verification actions were then conditionally executed, and 

the pilot could see on the first screen the consequences of these actions, such as changes in flight 

parameters or the appearance of warning messages or displays. After summarizing the 

information received, the pilot was able to either accept the hypothesis under consideration and 

choose a plan of action, or reject it and then proceed to test the next hypothesis. 
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Fig. 2 Dynamic image on the monitor screen when deviations in flight parameters from the 

normal mode begin 

 

Fig. 3 Image on the second monitor, where questions were presented to test various hypotheses 

about possible threat factors 
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These questions and answers guided the pilot’s thinking in the right direction when it 

came to finding an answer about the current threat factor. However, these were not just leading 

questions; they represented a specific thinking algorithm that the pilot should follow when 

analyzing an emergency situation. In essence, the pilot was encouraged to adopt a universal 

approach to thinking in situations where flight threats were identified (Yakimovich and 

Gorodetsky 2013). 

The inclusion of the TEM program in the professional training of pilots helps, firstly, to 

direct the pilot’s thinking in an emergency situation in the right direction, i.e., it helps to avoid 

confusion and immediately start diagnosing the causes of the incident. Secondly, the program 

teaches pilots to conduct diagnostics according to a specific scheme: to generate possible 

hypotheses and sequentially test them until the actual flight hazard factor is identified. Only then 

can they proceed to take action to mitigate the hazard. Thirdly, this program allows you to 

familiarize yourself with the most difficult situations in advance (during ground training), when 

there are similar initial symptoms of flight hazards and it is difficult to identify the actual hazard. 

In conclusion, I would like to emphasize that the design and implementation of the TEM 

program in airlines for various types of aircraft will reduce the percentage of aviation accidents 

caused by human error and make a significant contribution to improving flight safety in civil 

aviation as a whole. 
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